Share

from NIH PubMed

Piperine Inhibits Activation-Induced Proliferation and Effector Function of T Lymphocytes

Piperine is a simple alkaloid isolated from the seeds of Piper nigrum. Piperine and its derivatives exhibited a wide range of biological properties such as antitumor activity, antioxidant activity, antiinflammatory activity, antimycobacterial activity, insecticidal activity, etc. Dietary piperine, by favorably stimulating the digestive enzymes of pancreas, enhances the digestive capacity and significantly reduces the gastrointestinal food transit time. Piperine has been demonstrated in in vitro studies to protect against oxidative damage by inhibiting or quenching free radicals and reactive oxygen species. Black pepper or piperine treatment has also been evidenced to lower lipid peroxidation in vivo and beneficially influence cellular thiol status, antioxidant molecules and antioxidant enzymes in a number of experimental situations of oxidative stress. The most far-reaching attribute of piperine has been its inhibitory influence on enzymatic drug biotransforming reactions in the liver. It strongly inhibits hepatic and intestinal aryl hydrocarbon hydroxylase and UDP-glucuronyl transferase. Piperine has been documented to enhance the bioavailability of a number of therapeutic drugs as well as phytochemicals by this very property. Piperine's bioavailability enhancing property is also partly attributed to increased absorption as a result of its effect on the ultrastructure of intestinal brush border. Although initially there were a few controversial reports regarding its safety as a food additive, such evidence has been questionable, and later studies have established the safety of black pepper or its active principle, piperine, in several animal studies. Piperine, while it is non-genotoxic, has in fact been found to possess anti-mutagenic and anti-tumor influences.

Turmeric extract derived curcuminoids (curcumin, demethoxycurcumin and bisdemethoxycurcumin) are currently being evaluated for the treatment of cancer and Alzheimer's dementia. Previous in vitro studies indicate that curcuminoids and piperine (a black pepper derivative that enhances curcuminoid bioavailability) could inhibit human CYP3A, CYP2C9, UGT and SULT dependent drug metabolism.

Piperine inhibited polyclonal and antigen-specific T lymphocyte proliferation without affecting cell viability. Piperine also suppressed T lymphocyte entry into the S and G2 /M phases of the cell cycle, and decreased expression of G1 -associated cyclin D3, CDK4, and CDK6. In addition, piperine inhibited CD25 expression, synthesis of interferon-γ, interleukin (IL)-2, IL-4, and IL-17A, and the generation of cytotoxic effector cells. The inhibitory effect of piperine on T lymphocytes was associated with hypophosphorylation of Akt, extracellular signal-regulated kinase, and inhibitor of κBα, but not ZAP-70. The ability of piperine to inhibit several key signaling pathways involved in T lymphocyte activation and the acquisition of effector function suggests that piperine might be useful in the management of T lymphocyte-mediated autoimmune and chronic inflammatory disorders.

In traditional medicine, black pepper has been used as an analgesic, anti-inflammatory agent and in the treatment of epilepsy. This study was conducted to evaluate the in vivo analgesic and anticonvulsant effects of piperine in mice. The analgesic and anticonvulsant effects of piperine were studied in mice using acetic acid-induced writhing, tail flick assay, pentylenetetrazole (PTZ)- and picrotoxin (PIC)-induced seizures models. The intraperitoneal (i.p.) administration of piperine (30, 50 and 70 mg/kg) significantly inhibited (P<0.01) the acetic acid-induced writhing in mice, similar to the effect of indomethacin (20 mg/kg i.p.). In the tail flick assay, piperine (30 and 50 mg/kg, i.p.) and morphine (5 mg/kg, i.p.) caused a significant increase (P<0.01) in the reaction time of mice. Pre-treatment of animals with naloxone (5 mg/kg i.p.), reversed the analgesic effects of both piperine and morphine in the tail flick assay. Piperine (30, 50 and 70 mg/kg, i.p.) and standard drugs, valproic acid (200 mg/kg, i.p.), carbamazepine (30 mg/kg, i.p.) and diazepam (1 mg/kg, i.p.) significantly (P<0.01) delayed the onset of PTZ-and PIC-induced seizures in mice. These findings indicate that piperine exhibits analgesic and anticonvulsant effects possibly mediated via opioid and GABA-ergic pathways respectively.

Piperine attenuates cardiovascular, liver and metabolic changes in high carbohydrate, high fat-fed rats

Black pepper is used worldwide to enhance food flavor. We investigated dietary supplementation with piperine, the active principle of black pepper, to high carbohydrate, high fat (HCHF) diet-fed rats as a model of human metabolic syndrome. Rats were fed with either HCHF diet (carbohydrate, 52%; fat, 24%; 25% fructose in drinking water) or cornstarch (CS) diet for a total of 16 weeks. Diets of the treatment groups (CS + piperine and HCHF + piperine) were supplemented with piperine for the last 8 weeks of this protocol. After 16 weeks, rats fed with HCHF diet developed hypertension, elevated oxidative stress and inflammation-induced cardiac changes (infiltration of inflammatory cells in heart, increase in count and degranulation of mast cells in heart, cardiac fibrosis and increase in ventricular stiffness), reduced responsiveness of aortic rings, impaired glucose tolerance, abdominal obesity together with liver fibrosis, fat deposition and increased plasma liver enzymes. Supplementation with piperine (375 mg/kg food; approximately 30 mg/kg/day) in HCHF-fed rats normalized blood pressure, improved glucose tolerance and reactivity of aortic rings, reduced plasma parameters of oxidative stress and inflammation, attenuated cardiac and hepatic inflammatory cell infiltration and fibrosis and improved liver function. These changes clearly suggest that piperine reduces symptoms of human metabolic syndrome in HCHF-fed rats by reducing inflammation and oxidative stress.